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The effect of stretching on the three-dimensional stability of a viscous unsteady vortex
is addressed. The basic flow, which satisfies the Navier–Stokes equations, is a vortex
with axial flow subjected to a time-dependent strain field oriented along its axis. The
linear equations for the three-dimensional perturbations of the stretched vortex are
first reduced by using successive changes of variables to equations which are almost
identical to those of the unstretched vortex but with time-dependent parameters.
These equations are then numerically solved in the particular case of the Batchelor
vortex with a strain field which first compresses then stretches the vortex. Through this
simulation, it is qualitatively demonstrated how the simultaneous action of stretching
and azimuthal vorticity may destabilize a vortex. It is also argued that it provides a
possible mechanism for the vortex bursts observed in turbulence experiments.

1. Introduction
On the one hand, axisymmetric vortices with axial flow are known to be subject

to three-dimensional instabilities. On the other hand, stretching is known to modify
both the vortex characteristic parameters and the evolution of the perturbations. In
this work, general equations for the evolution of three-dimensional perturbations on
a stretched vortex with axial flow are derived. The effect of stretching on instability
is analysed, and a mechanism for the breakdown of vortices in turbulent flows is
proposed.

Stretching is one of the important features that differentiate three-dimensional
flows from two-dimensional flows as it prevents the local inviscid conservation of
enstrophy. In three-dimensional flows, vorticity can be enhanced (resp. diminished)
by stretching (resp. by compression) when oriented along a principal direction of
strain. This effect is described well by the Lundgren (1982) transform which maps
two-dimensional Navier–Stokes solutions to three-dimensional uniformly stretched
(or compressed) solutions. In particular, this transform demonstrates that the main
effect of an axial stretching/compression field is to modify the time and space
characteristics (vorticity maximum and core radius) of the vortex. In a turbulent
flow, one thus expects vorticity-filament characteristics to be continuously modified
by the background stretching field generated by surrounding vortices. In this context,
numerical studies have been recently performed where the stretching field acting on
a straight vortex is non-uniform (Verzicco, Jiménez & Orlandi 1995), time-periodic



420 I. Delbende, M. Rossi and S. Le Dizès

(Verzicco & Jiménez 1999), or generated by an array of vortex rings (Marshall 1997;
Abid et al. 2002).

Stretching also appears to be important for the statistical properties of turbulence.
Indeed, the only dynamical model which was successful in predicting the k−5/3 energy
spectrum of Kolmogorov turbulence was designed from uniformly stretched spiral
vortices (Lundgren 1982; see also Pullin & Saffman 1998 for a review). However,
despite its impressive success, the uniformly stretched vortex model used by Lundgren
is too simple as vorticity is always aligned with the vortex axis and with a principal
direction of strain.

This limitation has recently been overcome by Gibbon, Fokas & Doering (1999)
who extended Lundgren’s solutions to account for an axial flow component along
the vortex axis. Their solutions are interesting because both axial and azimuthal
vorticity are now present and because the stretching field is no longer uniform.
These new features make these solutions very attractive for vortex filament models in
turbulent flows. The presence of axial flow along the vortex axis, which appears to be
ubiquitous in stretched vortices (see for instance Andreotti, Douady & Couder 1997
and Petitjeans et al. 1998) could in particular explain some dynamical behaviours
of vortex filaments in turbulent flows such as bursts or vortex breakdowns. Indeed,
the latter phenomenon, which is characterized by a localized blow-up of the vortex
core and the appearance of a stagnation point has always been associated with axial
flows. Although there is still a controversy about whether or not vortex instability
is needed for vortex breakdown,† it is established that unstable modes do exist in
vortices with axial flow, especially in the Batchelor vortex. This vortex was introduced
by Batchelor (1964) in the context of an asymptotic description of trailing vortices.
Both its axial vorticity and axial velocity have the same Gaussian profile. More
generally it constitutes an exact solution of the Navier–Stokes equations if one takes
into account the modification of the core radius due to viscous diffusion. This weak
time-dependence effect has usually been neglected and the Batchelor vortex has been
considered as a stationary solution on which normal modes exist. Temporal instability
properties are given by Lessen, Singh & Paillet (1974), Lessen & Paillet (1974), Mayer
& Powell (1992) and Ash & Khorrami (1995). These authors showed that for large
Reynolds numbers and intermediate swirl numbers q (0 < q < 1.5), where q is defined
as the ratio of azimuthal to axial velocity, the instability is dominated by inviscid
negative helical modes. These modes become stable for swirl numbers larger than 1.5.
The absolute/convective character of this instability was analysed by Olendraru et al.
(1996, 1999) and Delbende, Chomaz & Huerre (1998).

In the present paper, we consider a Batchelor vortex subjected to a time-dependent
stretching/compression field along its axis. Remarkably, Gibbon et al. (1999) showed
that even subjected to a stretching field, the Batchelor vortex remains a Navier–Stokes
solution provided its radius and swirl number follow particular time evolutions given
in § 2. This general family of stretched vortices naturally contains Burgers’ vortex as
a particular case (constant stretching and infinite swirl number). Our goal is here
to analyse the linear evolution of three-dimensional perturbations on such a time-
evolving flow. More specifically, we address the issue of whether three-dimensional
perturbations on the stretched vortex are related to those on the unstretched one.

So far, the effect of stretching on three-dimensional perturbations has been analysed

† Vortex breakdown, i.e. the appearance of a stagnation point, occurs in various geometries
(boxes with rotating ends, cylinders with varying diameter) for which other theories exist (see
Leibovich 1978, 1983 and Escudier 1988 for a review).
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only in the context of vortices without axial flow. Rossi & Le Dizès (1997) showed that
the three-dimensional temporal spectrum of steady stretched vortices (axisymmetric
or not) only contains modes which are independent of the axial coordinate (stretching
axis). The effect of stretching on the elliptical instability of a vortex was analysed by
Le Dizès, Rossi & Moffatt (1996) for a uniform vorticity flow and by Eloy & Le Dizès
(1999) for an elliptically deformed Gaussian vortex. In both instances, the authors
showed that stretching tends to limit the growth of the unstable modes in time, and
therefore to stabilize the vortex for a sufficiently strong stretching rate.

In the present paper, the same issue is addressed for the Batchelor-vortex instability.
However, by contrast with asymptotic analyses of the elliptical instability, a direct
numerical simulation is used here, whereby a time-varying stretching rate is considered.
In this framework, the selection process of the most unstable perturbations from white
noise initial conditions is considered.

The paper is organized as follows. In § 2, the results of Gibbon et al. (1999) are
reviewed and the stretched Batchelor vortex solution, which is considered in the rest
of the paper, is presented. In § 3, the equations governing the dynamics of linear three-
dimensional perturbations to the stretched Batchelor vortex are derived. It is shown
how they are related to those for the unstretched vortex via changes of variables and
a quasi-static approximation. The numerical procedure used for the simulations is
then presented in § 4: it is a velocity/vorticity pseudo-spectral method adapted to the
current problem. Results are given and discussed in § 5.

2. The basic flow
Gibbon et al. (1999) recently obtained new exact solutions to the Navier–Stokes

equations which extend the solutions previously used by Lundgren (1982). In the case
of an axisymmetric flow, the velocity field of these solutions has, in polar coordinates
(r, θ, z), the following form:

Utot
r (r, t) = −γ(t)

2
r, (2.1)

Utot
θ (r, t) = Uθ(r, t), (2.2)

W tot(r, z, t) = γ(t)z +W (r, t), (2.3)

which is a combination of an axisymmetric vortex of azimuthal velocity Uθ(r, t), an
axial jet of velocity W (r, t) and an unsteady linear stretching field of strain rate
γ(t). These solutions are more general than the Burgers vortex as vorticity is not
necessarily aligned along with the vortex axis or with a principal direction of strain.
Indeed, there are both an axial and an azimuthal component of vorticity, given by

Ωtot
z (r, t) =

1

r

∂(rUθ)

∂r
, Ωtot

θ (r, t) = −∂W
∂r

.

Gibbon et al. (1999) showed that the governing equations reduce to a system of three
equations for Ωtot

z , W and γ:

DΩtot
z

Dt
= γΩtot

z + ν∆Ωtot
z , (2.4)

DW

Dt
= −γW + ν∆W, (2.5)

Dγ

Dt
+ γ2 +

∂2P tot

∂z2
= ν∆γ, (2.6)
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where
D

Dt
≡ ∂

∂t
− γr

2

∂

∂r
.

In system (2.4)–(2.6), ν stands for the fluid kinematic viscosity and the second partial
z-derivative of the pressure P tot is assumed uniform. Here, we impose the strain rate
γ(t) and deduce the pressure from

P tot(r, t) =

∫ r

0

U2
θ (r
′, t)
r′

dr′ +
(

dγ

dt
− γ2

2

)
r2

4
−
(

dγ

dt
+ γ2

)
z2

2
. (2.7)

Note that equations (2.4) and (2.5) demonstrate that axial vorticity is enhanced by
stretching while axial velocity and azimuthal vorticity are reduced. The dynamical
exchange between the different vorticity components makes these solutions richer than
unidirectional vortices and probably better candidates for vortex filament models.

When stretching/compression terms are discarded, equations (2.4) and (2.5) reduce
to radial diffusion equations which are known to possess a Gaussian kernel. Using
time and space rescalings, Gibbon et al. (1999) have extended this property, finding
the following self-similar solution of (2.4) and (2.5):

Uθ(r, t) =
Γ

2πr

[
1− exp

(
− r

2

a2

)]
, (2.8)

W (r, t) =
W0

s2(a/a0)2
exp

(
− r

2

a2

)
, (2.9)

where a(t) denotes the vortex core size, a0 its initial value, Γ the constant vortex
circulation, W0 the initial centreline velocity, and s(t) the dimensionless quantity

s(t) = exp

(∫ t

0

γ(u)du

)
. (2.10)

The core size a(t), which has been chosen identical for both axial and azimuthal
velocity components, depends on the kinematic viscosity ν and the strain rate γ(t) via

a2(t) =
a2

0 + 4ντ

s
, (2.11)

where

τ =

∫ t

0

s(u)du (2.12)

stands for a modified time which coincides with time t in the case of zero strain γ = 0.
At each time t, expressions (2.8) and (2.9) for Uθ and W characterize an instan-

taneous Batchelor vortex of radius a(t) and swirl number q(t), where

q(t) =
Γ

2πa2
0W0

s2a

denotes the ratio of the characteristic azimuthal velocity Γ/(2πa) to the centreline
axial velocity W0a

2
0/(s

2a2).
The present paper is aimed at investigating the three-dimensional stability properties

of solution (2.1)–(2.3) with the Batchelor profiles (2.8) and (2.9). The same analysis is
naturally possible with other profiles but would require the consideration of varying
profiles which always tend towards the Batchelor profile through viscous diffusion.
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Hence the choice of the Batchelor profile is natural. Moreover, the stability properties
of the unstretched Batchelor vortex are well-known, which allows a direct comparison
between stretched and unstretched cases.

As mentioned above, the time-evolution of the characteristic parameters of the
Batchelor vortex depends on the way the strain rate varies. One could imagine that in
a turbulent environment this variation would be coupled to the dynamics of distant
vortices (via the pressure term in equation (2.6)). Such an explicit coupling is not
considered here, but will be modelled by a particular variation of the strain rate.
Moreover, only perturbations which are localized in the vortex core are considered.
In the numerical part § 5.2 of the present study, the basic flow (2.1)–(2.3) evolves in
time as follows. For 0 6 t < t?, the vortex is compressed with a constant negative
strain rate γ = −γ0 < 0, so that

s(t) = exp(−γ0t), (2.13)

τ(t) =
1− exp(−γ0t)

γ0

, (2.14)

a2(t) =

(
a2

0 +
4ν

γ0

)
exp(γ0t)− 4ν

γ0

. (2.15)

When time t varies from 0 to t?, the modified time τ and the characteristic radius
a(t) increase. By definition, τ varies from 0 to τ? such that τ?γ0 = 1 − exp(−γ0t?);
in particular, if t? = ∞, τ? = 1/γ0. If t? is large enough, there exists a time tq after
which the swirl number q(t) decreases, i.e. the jet component of the flow increases
with respect to the swirling component. The value of tq depends on the relative size
of a0 with respect to (ν/γ0)

1/2.

For t > t?, the vortex is stretched with the opposite strain rate γ = γ0 > 0:

s(t) = s(t?) exp[γ0(t− t?)], (2.16)

τ(t) = τ(t?) +
s(t)− s(t?)

γ0

= τ? + s(t?)
exp[γ0(t− t?)]− 1

γ0

, (2.17)

a2(t) =

[
a2(t?)− 4ν

γ0

]
exp [−γ0(t− t?)] +

4ν

γ0

. (2.18)

Time t varies from t? to +∞ when variable τ increases from τ? to +∞. The char-
acteristic radius a(t) tends towards a finite value 2(ν/γ0)

1/2 while the swirl number
q(t) increases to +∞. In this case, the jet component always decreases with respect
to the swirling component. Asymptotically one recovers a stationary stretched vortex
aligned with the z-axis and subjected to a global strain field, i.e. the well-known
Burgers vortex governed by the balance between stretching and viscous diffusion.

Note that, from a mathematical point of view, quantity γ(t) might a priori follow
any time dependence, so that steady or time-periodic† functions could be used instead
of (2.13)–(2.18). However, we expect quantity γ(t), which models the action of large
structures on the vortex, to fluctuate with a characteristic time larger than the turnover
time. Our choice has been guided by simplicity: the selected time dependence is the
simplest fluctuation containing a single stretching and compression phase.

† A time-periodic fluctuation is of interest if its period becomes of the same order as the turnover
time.
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3. Linear three-dimensional perturbations: governing equations
In this section, the three-dimensional stability equations of the stretched vortex

with basic flow velocity U tot(t) are considered. It is shown how the evolution of
three-dimensional perturbations are connected to those in an unstretched vortex.

The dynamics of infinitesimal pressure p and velocity u perturbations is governed
by the linear system

∂tu+ (U tot(t) · ∇)u+ (u · ∇)U tot(t) = −∇p+ ν∆u, (3.1)

∇ · u = 0, (3.2)

which is inhomogeneous with respect to time t and spatial coordinates r and z. In
polar coordinates, the above equations for perturbations u = (u, v, w) and p are

Du

Dt
− γ(t)

2
u− 2

Uθ(r, t)

r
v = −1

ρ

∂p

∂r
+ ν(∆u)r, (3.3)

Dv

Dt
− γ(t)

2
v +

(
∂Uθ(r, t)

∂r
+
Uθ(r, t)

r

)
u = − 1

ρr

∂p

∂θ
+ ν(∆u)θ, (3.4)

Dw

Dt
+ γ(t)w +

∂W

∂r
u = −1

ρ

∂p

∂z
+ ν(∆u)z, (3.5)

∂u

∂r
+
u

r
+

1

r

∂v

∂θ
+
∂w

∂z
= 0, (3.6)

where ν(∆u)r , ν(∆u)θ and ν(∆u)z denote the classical polar components of the viscous
term and D/Dt stands for the convective derivative relative to the basic state:

D

Dt
≡ ∂

∂t
− γ(t)r

2

∂

∂r
+
Uθ(r, t)

r

∂

∂θ
+ (W (r, t) + γ(t)z)

∂

∂z
. (3.7)

This stability problem cannot be handled by a standard Fourier transform technique
because of the explicit space and time dependences. However, the present section
provides a connection between equations (3.1)–(3.7) and the linear equations gov-
erning the dynamics of infinitesimal disturbances in an axisymmetric time-dependent
unstretched basic flow. This is reminiscent of the Lundgren transformation

t −→ τ =

∫ t

0

s(u)du, (3.8)

r −→ r̄ =
√
s(t)r, (3.9)

θ −→ θ, (3.10)

which precisely relates the basic flow U tot(t) to the Navier–Stokes solution formed by
the diffusing unstretched Batchelor vortex (0, U2D

θ (r̄, τ),W 2D(r̄, τ)), where

U2D
θ (r̄, τ) =

Uθ(r̄/
√
s(t), t)√
s(t)

=
Γ

2πr̄

[
1− exp

(
− r̄2

a2
0 + 4ντ

)]
(3.11)

W 2D(r̄, τ) = s(t)W (r̄/
√
s(t), t) =

W0a
2
0

a2
0 + 4ντ

exp

(
− r̄2

a2
0 + 4ντ

)
. (3.12)

An appropriate change of variables is now applied on the stability equations (3.1)–(3.7)
which eliminates the terms relative to stretching as well as the explicit z-dependence.
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To this end, in addition to Lundgren’s transformation (3.8)–(3.10), a change of variable
for z

z −→ z̄ =
z

s(t)
(3.13)

is performed. This transformation, which is often written in terms of a time-dependent
wavenumber, is commonly used in the context of inertial waves (see Craik & Criminale
1986) or rapid distortion theory (Batchelor & Proudman 1954; Cambon & Scott 1999).

Such changes of variable neither modify the partial derivatives with respect to θ
nor affect the elementary volume. Moreover the following relations hold:

∂

∂t
= S(τ)

∂

∂τ
+

dS

dτ

r̄

2

∂

∂r̄
− dS

dτ
z̄
∂

∂z̄
(3.14)

and

∂

∂r
=
√
S(τ)

∂

∂r̄
,

∂

∂z
=

1

S(τ)

∂

∂z̄
, (3.15)

where the function S(τ) ≡ s(t) satisfies

γ(t) =
dS

dτ
=

1

s

ds

dt
. (3.16)

Transformation (3.8)–(3.9) (resp. (3.13)) eliminates the term − 1
2
γr∂r (resp. γz∂z) in the

convective derivative, which then becomes

D

Dt
= S(τ)

D̄

D̄τ
, (3.17)

where

D̄

D̄τ
≡ ∂

∂τ
+
U2D
θ (r̄, τ)

r̄

∂

∂θ
+
W 2D(r̄, τ)

S3(τ)

∂

∂z̄
. (3.18)

It is readily seen that stretching has been explicitly eliminated in (3.18).
In accordance with equations (3.11)–(3.12), the following transformations are in-

troduced to preserve the ratio between perturbations and basic state:

ū =
u√
S
, v̄ =

v√
S
, w̄ = Sw, p̄ =

p

S
. (3.19)

This procedure removes the amplification factor due to external strain which affects
perturbation amplitudes. The complete linear system then becomes

D̄ū

D̄τ
− 2

U2D
θ

r̄
v̄ = −1

ρ

∂p̄

∂r̄
+ ν

[
(∆2Dū)r̄ +

1

S3

∂2ū

∂z̄2

]
, (3.20)

D̄v̄

D̄τ
+

(
∂U2D

θ

∂r̄
+
U2D
θ

r̄

)
ū = − 1

ρr̄

∂p̄

∂θ
+ ν

[
(∆2Dū)θ +

1

S3

∂2v̄

∂z̄2

]
, (3.21)

D̄w̄

D̄τ
+
∂W 2D

∂r̄
ū = −1

ρ

∂p̄

∂z̄
+ ν

[
(∆2Dū)z̄ +

1

S3

∂2w̄

∂z̄2

]
, (3.22)

∂ū

∂r̄
+
ū

r̄
+

1

r̄

∂v̄

∂θ
+

1

S3

∂w̄

∂z̄
= 0. (3.23)
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Quantities (∆2Dū)r̄ , (∆2Dū)θ and (∆2Dū)z̄ denote the components of the viscous Lapla-
cian term in which the derivatives with respect to z̄ are omitted:

(∆2Dū)r̄ =
∂

∂r̄

[
1

r̄

∂(r̄ū)

∂r̄

]
+

1

r̄2

∂2ū

∂θ2
− 2

r̄2

∂v̄

∂θ
, (3.24)

(∆2Dū)θ =
∂

∂r̄

[
1

r̄

∂(r̄v̄)

∂r̄

]
+

1

r̄2

∂2v̄

∂θ2
+

2

r̄2

∂ū

∂θ
, (3.25)

(∆2Dū)z̄ =
1

r̄

∂

∂r̄

[
r̄
∂w̄

∂r̄

]
+

1

r̄2

∂2w̄

∂θ2
. (3.26)

This transformation thus shows that the two-dimensional stability (∂/∂z̄ ≡ 0) of a
stretched vortex (2.1)–(2.3) is directly related to the two-dimensional stability prob-
lem for its unstretched and diffusing counterpart (0, U2D

θ (r̄, τ),W 2D(r̄, τ)), as already
implied by Gibbon et al. (1999). For the general three-dimensional stability problem,
the above system is quite close to the three-dimensional stability of the unstretched
basic flow state (0, U2D

θ (r̄, τ),W 2D(r̄, τ)). It differs only through the presence of 1/S3

terms associated with z̄-derivatives. In particular, equation (3.23) expresses the fluid
incompressibility via a modified divergence-free condition. In system (3.20)–(3.23),
the explicit time dependence originates (a) in the viscous diffusion acting on the
unstretched basic Batchelor vortex, and (b) in the 1/S3 factors. A quasi-static approx-
imation might help to understand the dynamics of perturbations, a feature that will
be exploited in §5. Near a time τ1, viscous diffusion is neglected in the basic state, i.e.
the core size a is taken to be constant and equal to a1 = (a2

0 +4ντ1)
1/2. Locally in time,

this characteristic length scale a1 provides a characteristic velocity scale Γ/(2πa1) and
time scale 2πa2

1/Γ . Let us now assume that the non-dimensional strain rate 2πγa2
1/Γ

is small. Such an hypothesis is generally made in turbulence studies where stretching
due to large scales, typically of magnitude γa1, is small with respect to the velocity in
the vortex Γ/(2πa1). As a result, S(τ) is slowly evolving in time (see (3.16)), although
it might be of order one. A quasi-static approximation is thus fully justified: near
time τ1, the parameter S is frozen, in the above equations, to its value S1 = S(τ1).

Let Γ/(2πa1) be employed as a scale for velocity components ū and v̄, ΓS
3/2
1 /(2πa1)

as a scale for velocity component w̄, ρ[Γ/(2πa1)]
2 as a scale for pressure p, a1 as

length scale for r̄, a1S
−3/2
1 as length scale for z̄, and 2πa2

1/Γ as time scale. Written in
dimensionless form, the quasi-static equations are identical to the equations governing
the linear perturbations of an unstretched Batchelor vortex with azimuthal and axial
velocity respectively given by

Uθ(r̄) =
1− exp(−r̄2)

r̄
, (3.27)

W (r̄) =
1

q
exp(−r̄2), (3.28)

with swirl and Reynolds numbers

q =
S

3/2
1 Γa1

2πW0a
2
0

, ReΓ =
Γ

2πν
.

In this quasi-static approximation, the linear stability characteristics are thus directly
connected to those of an unstretched Batchelor vortex. In particular, the swirl number
q indicates whether we enter the region of the equivalent swirling jet instability.
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4. Numerical formulation
For numerical purposes, the perturbation equations (3.20)–(3.23) are put in dimen-

sionless form using the initial axial velocity W0 as the velocity scale, the initial core
size a0 as the spatial scale, a0/W0 as time scale for t or τ and ρW 2

0 as the pressure
scale:

D̄ū

D̄τ
− 2

U2D
θ

r̄
v̄ = −∂p̄

∂r̄
+

1

Re

[
(∆2Dū)r̄ +

1

S3

∂2ū

∂z̄2

]
, (4.1)

D̄v̄

D̄τ
+

(
∂U2D

θ

∂r̄
+
U2D
θ

r̄

)
ū = −1

r̄

∂p̄

∂θ
+

1

Re

[
(∆2Dū)θ +

1

S3

∂2v̄

∂z̄2

]
, (4.2)

D̄w̄

D̄τ
+
∂W 2D

∂r̄
ū = −∂p̄

∂z̄
+

1

Re

[
(∆2Dū)z̄ +

1

S3

∂2w̄

∂z̄2

]
, (4.3)

∂ū

∂r̄
+
ū

r̄
+

1

r̄

∂v̄

∂θ
+

1

S3

∂w̄

∂z̄
= 0, (4.4)

where the convective derivative D̄/D̄τ is

D̄

D̄τ
=

[
∂

∂τ
+
U2D
θ (r̄, τ)

r̄

∂

∂θ
+
WD(r̄, τ)

S3(τ)

∂

∂z̄

]
. (4.5)

Three dimensionless parameters are of importance here, namely the Reynolds number
Re, the initial swirl number q0 and the dimensionless strain rate γ̃(τ):

q0 =
Γ

2πa0W0

, Re =
W0a0

ν
=
ReΓ

q0

, γ̃(τ) =
γa0

W0

. (4.6)

When the strain rate γ̃ is constant during a time interval [τ?, τ], recall that the
dimensionless parameter S satisfies S(τ) = S(τ?) + γ̃(τ− τ?).

The basic flow in (4.1)–(4.4) evolves in time according to

U2D
θ (r̄, τ) =

q0

r̄

[
1− exp

(
− r̄2

1 + 4τ/Re

)]
, (4.7)

W 2D(r̄, τ) =
1

1 + 4τ/Re
exp

(
− r̄2

1 + 4τ/Re

)
. (4.8)

In the subsequent analyses, we focus on a period of time much smaller than the
one in which viscous diffusion acts on the basic flow, i.e. we assume that 4τ/Re� 1
in (4.7)–(4.8). Indeed for high Reynolds numbers Re � 1, such a time may be
large with respect to the time in which instability takes place. Note that, within this
approximation, a1 = a0 and the instantaneous swirl number is

q(τ) =
S3/2Γ

2πa0W0

= S3/2q0 . (4.9)

In the remaining part of this section, bars are omitted in order to simplify the
notation. Equations (4.1)–(4.3) may then be recast as follows:

∂τu+ (U 2D · ∇)u+ (u · ∇)U 2D =

(
1− 1

S3

)
W 2D∂zu− ∇p

+
1

Re

(
∆2Du+

1

S3

∂2u

∂z2

)
, (4.10)



428 I. Delbende, M. Rossi and S. Le Dizès

where the field U 2D is now stationary, and is given in polar coordinates by

U 2D(r) = (0, U2D
θ (r),W 2D(r)). (4.11)

The numerical code used in the present paper is adapted from Vincent & Meneguzzi
(1991). It is written using the velocity/vorticity formulation pertaining to formula
(4.10):

∂τu = U 2D × ω + u×Ω2D +

(
1− 1

S3

)
W 2D∂zu

−∇(p+U 2D · u) +
1

Re

(
∆2Du+

1

S3

∂2u

∂z2

)
, (4.12)

where Ω2D = ∇ × U 2D and ω = ∇ × u. So far, the incompressibility condition (4.4)
has not been used. Equation (4.12) may be expressed in the spectral domain relative
to the three Cartesian directions (x, y, z). Each Fourier mode uk corresponding to the
wavevector k = (kx, ky, kz) evolves according to

duk
dτ

=
[
U 2D × ω + u×Ω2D

]
k

+ ikz

(
1− 1

S3

)[
W 2Du

]
k

−ik
[
p+U 2D · u]

k
− 1

Re

(
k2
x + k2

y +
k2
z

S3

)
uk, (4.13)

where [·]k denotes the k-Fourier coefficient of the term inside the brackets. Note that
relation ∂zW

2D = 0 is used to derive equation (4.13). Following standard practice, each
Fourier mode uk is then decomposed into a component u

‖
k parallel to the wavevector

k and a component u⊥k orthogonal to it. The temporal evolution of u⊥k is obtained by
projecting equation (4.13) onto the plane orthogonal to k:

du⊥k
dτ

= P⊥k

([
U 2D × ω + u×Ω2D

]
k

+ ikz

(
1− 1

S3

)[
W 2Du

]
k

)
− 1

Re

(
k2
x + k2

y +
k2
z

S3

)
u⊥k , (4.14)

where the symbol P⊥k stands for the projection operator. The parallel component u
‖
k is

thereafter obtained as a by-product of the modified incompressibility condition (4.4)
as explained below. The usual divergence-free condition k · uk = 0 would impose

u
‖
k = 0. The modified condition (4.4) now yields

k · uk =

(
1− 1

S3

)
kzuz,k , (4.15)

where uz,k denotes the axial component of uk. As a consequence, the following relation
between u⊥k and uk is established:

u⊥k ≡ P⊥k uk ≡ uk − k · uk
k2

k = uk −
(

1− 1

S3

)
kzuz,k

k2
k. (4.16)

This relation may be easily inverted to yield the three components of uk from the
components (u⊥x,k, u⊥y,k, u⊥z,k) of u⊥k :

ux,k = u⊥x,k +

(
1− 1

S3

)
kxkz

k2

[
1− k2

z

k2

(
1− 1

S3

)]−1

u⊥z,k, (4.17)
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uy,k = u⊥y,k +

(
1− 1

S3

)
kykz

k2

[
1− k2

z

k2

(
1− 1

S3

)]−1

u⊥z,k, (4.18)

uz,k =

[
1− k2

z

k2

(
1− 1

S3

)]−1

u⊥z,k. (4.19)

Let δτ denote the time step. The velocity perturbation u(τ + δτ) is computed using
u(τ) and u(τ−δτ) as follows. The application of a fast Fourier transform first provides
uk(τ) from which u⊥x,k(τ), u⊥y,k(τ) and u⊥z,k(τ) are extracted using (4.16). The time advance
is then performed by discretizing equation (4.14) according to an explicit second-order
Adams–Bashforth scheme:

u⊥k (τ+ δτ) = eu⊥k (τ) +
[

3
2
eP⊥k (τ)− 1

2
e2P⊥k (τ− δτ)] δτ, (4.20)

where the damping factor e = exp{−(k2
x + k2

y + S−3k2
z )δτ/Re} stems from the exact

integration of the modified viscous term. Vector P⊥k (τ) stands for

P⊥k (τ) = P⊥k

([
U 2D × ω + u×Ω2D

]
k

+ ikz

(
1− 1

S3

)[
W 2Du

]
k

)
(4.21)

evaluated at time τ. Note that products U 2D × ω + u × Ω2D and W 2Du are first
evaluated in physical space, then transformed in spectral space and finally projected
onto the plane perpendicular to k. The above procedure yields the three components
u⊥x,k(τ+δτ), u⊥y,k(τ+δτ) and u⊥z,k(τ+δτ). It can be checked that the property u⊥k ·k = 0, by
construction of vector P⊥k (τ), is verified at τ+ δτ by simply taking the dot product of
equation (4.20) with k. Relations (4.17)–(4.19) then provide uk(τ+ δτ) and eventually
lead to u(τ+ δτ) via a reverse Fourier transform.

In this numerical Fourier formulation, periodic boundary conditions are enforced
and the computational domain consists of a cubic box of size L = 10.24, meshed
by a Cartesian grid of 1283 collocation points with spacing δl = 0.08 in the three
directions. Along the x- and y-axes, the computational domain is wide enough
relative to the vortex diameter that the numerical solution satisfactorily approxi-
mates the dynamics of an isolated vortex in an infinite medium. Along the vortex
z-axis, periodicity imposes a discretization in the axial wavenumber spectrum: the
maximum wavenumber equals π/δl ≈ 40 and successive axial wavenumbers are sep-
arated by δkz = 2π/L ≈ 0.61. One may wonder whether this numerical spacing of
axial wavenumber δkz is small enough. First, note that the time evolution of each
axial mode computed is properly taken into account, since the equations are linear
and homogeneous in the z-direction. Second, figure 2 indicates that for any given
azimuthal number, the region where the stability curve reaches its maximum con-
tains at least one discretized wavenumber. As a consequence, it is expected that this
spacing δkz is sufficient to get the main part of the phenomenology, in particular
the correct time evolution and spatial structures. This feature has been checked by
performing a simulation in which the kz spacing is reduced by a factor two. This
is done by doubling the streamwise extent Lz . No major consequences have been
detected. In order to satisfy a CFL-type condition, the time step δτ is chosen in the
range 1 − 5 × 10−3. During the simulation, the time step δτ is adapted – especially
during a vortex compression phase, since the time t diverges when the dimensionless
time τ approaches W0/(a0γ0) (see equation (2.14)).
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5. Results

Instability for an unsteady basic flow such as (2.8)–(2.9) is not as straightforward a
notion as for a steady state. For a steady basic flow, the instability criterion is defined
through a norm based, for instance, on the kinetic energy of the perturbations

I(t) =

∫
V

(u2 + v2 + w2)rdrdθdz (5.1)

over some physical domain V (hereafter the computational domain). The equivalent
quantity I0 for the basic flow is constant. When the flow is unsteady, one cannot
quantify how perturbations modify the flow structure as time evolves simply by using
I(t) since the basic state and therefore I0 are time dependent. In such a case, ratios
between perturbation and basic-state energies seem more appropriate. For instance,
one may examine the two ratios Ipl(t)/I

0
pl(t), Iax(t)/I

0
ax(t) where

Ipl(t) =

∫
V

(u2 + v2)rdrdθdz, I0
pl(t) =

∫
V
U2
θrdrdθdz,

Iax(t) =

∫
V
w2rdrdθdz, I0

ax(t) =

∫
V
W 2rdrdθdz.

 (5.2)

Note that only the vortical part, and not the external strain, is used to compute the
basic flow energy. Similar quantities may be defined in the transformed system:

Jpl(t) =

∫
V

(ū2 + v̄2)r̄dr̄dθdz̄, J0
pl(t) =

∫
V

(U2D
θ )2r̄dr̄dθdz̄,

Jax(t) =

∫
V
w̄2r̄dr̄dθdz̄, J0

ax(t) =

∫
V

(W 2D)2r̄dr̄dθdz̄.

 (5.3)

It is noteworthy that the following equalities hold between the ratios written in the
original and transformed systems:

Jpl(t)

J0
pl(t)

=
Ipl(t)

I0
pl(t)

,
Jax(t)

J0
ax(t)

=
Iax(t)

I0
ax(t)

. (5.4)

In the present study, J0
pl and J0

ax are constant since the action of viscous diffusion on

the basic flow U 2D is neglected. As a consequence, the study of ratios (5.4) amounts,
in this unsteady case, to examining the evolution of Jpl(t) and Jax(t) in a fashion very
similar to that used for steady flows. In what follows the ratios written in the original
and transformed systems are used indiscriminantly. Some insight into the flow axial
structure may be also obtained by examining two functions of the axial variable z̄:

jpl(z̄, τ) =

∫
(ū2 + v̄2)r̄dr̄dθ, jax(z̄, τ) =

∫
w̄2r̄dr̄dθ, (5.5)

which denote the instantaneous energy, at the streamwise location z̄, of transverse
and axial velocities respectively.

In the following, the Reynolds number is fixed to Re = 667 to allow comparison
with previous works (Delbende et al. 1998). In all the simulations, perturbations are
initiated using a random field which is obtained by projecting a spatial white noise on
the space of divergence-free fields. At time t = 0, this projection is simply performed
in Fourier space by applying the operator P⊥k .



Stretching effects on three-dimensional vortex instability 431

101

100

10–1

10–2

10–3

0 10 20 30

q = 0.8
r = 0.30

q =1.6
r = –0.011

t

Jax

J 0
ax√

Jpl

J 0
pl√

Figure 1. Temporal evolution of (Jpl/J
0
pl)

1/2 (solid line) and (Jax/J
0
ax)1/2 (dotted line) for γ = 0 at

swirl numbers q = 0.8 and q = 1.6, with Re = 667.

5.1. Simulations with γ = 0

The first two simulations are performed with no stretching applied. The usual Batch-
elor vortex at constant swirl number q is then recovered. Apart from a numerical
check, these computations reveal the main features observed when using white noise
initial conditions. They hence provide reference cases for later analyses.

Two values of the swirl number q = 0.8 and q = 1.6 are considered, which
correspond to an unstable and a stable configuration respectively (Lessen et al. 1974).
The Reynolds number is set to Re = 667. In figure 1, the temporal evolution of
(Jpl/J

0
pl)

1/2 and (Jax/J
0
ax)

1/2 is plotted for both swirl numbers. As expected, the first
one displays an asymptotic growth of perturbations, while the second leads to an
asymptotic damping.

A transient period of decrease is initially observed corresponding to the damping
of most small-scale modes and positive azimuthal wavenumbers. Indeed it is known
from classical stability analyses of the Batchelor vortex that azimuthal wavenumbers
n = 0 and n > 2 are always stable, and mode n = 1 is stabilized as soon as q > 0.074.
The next stage of the simulation is reached when the unstable modes for q = 0.8
(respectively the less stable modes for q = 1.6) emerge from the initial noise. Note
that an instantaneous growth rate can be defined as the amplitude derivative

d

dt

[
log

√
Jpl

J0
pl

]
. (5.6)

The maximum of this quantity may then be obtained, in the semi-log representation
of figure 1, as the asymptotic slope of the plotted curves. For q = 0.8, the computed
value σ = 0.30 agrees with the standard stability analyses of the Batchelor vortex.

According to previous studies (Mayer & Powell 1992), the overall maximum inviscid
growth of perturbations is attained at q ≈ 0.87. Moreover, the maximum inviscid
growth rate for a fixed swirl number q and negative azimuthal wavenumber n increases
with |n| and saturates as n→ −∞ (Leibovich & Stewartson 1982). However, viscosity
counterbalances this latter effect thus leading to an overall maximum for a finite
value of n. For instance, the growth rate curves σn(kz) at Re = 667 and swirl number
q = 0.8 are drawn as solid lines on figure 2 (Delbende et al. 1998). The most unstable
modes are associated with the azimuthal wavenumber n = −3 and axial wavenumber
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Figure 2. Temporal growth rate σ as a function of axial wavenumber kz for parameters γ = 0, q = 0.8
and Re = 667. The symbols • denote the growth rates of the discrete axial wavenumbers obtained
in the present simulation, computed from the time evolution of perturbation spectra. Each solid
line (reported from Delbende et al. 1998) shows the growth rate σn(kz) for each unstable azimuthal
wavenumber n (n is indicated near the associated curve) obtained from a viscous DNS-based
stability analysis at the same Reynolds number.

kz ≈ 1.68 (σ ≈ 0.31), the azimuthal wavenumber n = −4 and axial wavenumber
kz ≈ 2.17 (σ ≈ 0.31) and the azimuthal wavenumber n = −5, axial wavenumber
kz ≈ 2.68 (σ ≈ 0.30). The time evolution of perturbation spectra in the present
simulation for q = 0.8 may be used to recover, for each discrete axial wavenumber
kz , the associated growth rate σ. More precisely, we have separated, at some given
times, the different axial kz̄ and azimuthal n wavenumbers of the axial velocity field,
which provides various discretized components un(kz̄, r, τ). By integrating this function
over r, a quantity is obtained which undergoes an exponential time evolution near
the end of the simulation. The growth rate for each (kz̄, n) is then obtained by a
primitive two-point interpolation with respect to time. Indeed, this study does not
aim at providing an accurate comparison with the theoretical stability results for such
modes. These results, plotted as circles in figure 2, are consistent with the growth rate
curves σn(kz) and indicate that modes emerging in the present simulations must be
related to these predominant azimuthal wavenumbers n = −3, n = −4 and n = −5.

5.2. Simulations with γ 6= 0

The third simulation consists of a compression phase immediately followed by a
stretching phase. More specifically, the strain rate is set to γ̃ = −0.025 for 0 6 τ 6 15,
and to γ̃ = +0.025 for 15 < τ 6 30. Quantity γ is expected to be small when
scaled using the vortex characteristics (see e.g. the asymptotic analysis by Moffatt,
Kida & Ohkitani 1994). For the same reasons, it is assumed that it fluctuates with
a characteristic time larger than the turnover time. Therefore, we choose relatively
low values for γ0 and values significantly larger than 1 for τ?. For this strain-rate
time evolution, τ (see relations (2.14) and (2.17)) is not identical to physical time t
as illustrated in figure 3. The instantaneous swirl number, initially set to q(0) = 1.8,
decreases during the compression down to the value q ≈ 0.88, and thereafter increases
back towards its initial value (figure 4a). Similarly, the basic-state core expands and
shrinks back, as depicted in figure 4(b). Let us hereafter call the q-region where
unstable modes prevail for the unstretched inviscid Batchelor vortex, the Batchelor-
vortex instability domain. Initially the basic vortex flow lies outside this region,
then penetrates it and finally leaves it. The time evolution of fluctuations perturbing
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Figure 3. Physical time t versus modified time τ used for the simulation with compression and
stretching. The circles denote the position of the snapshots pictured in figures 6–10. The straight
line indicates function t = τ prevailing when γ = 0.
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Figure 4. Instantaneous (a) swirl number q(t) and (b) core size a(t) as functions of physical
time t for the simulation with compression and stretching. The dashed line corresponds to the
Batchelor-vortex instability threshold at q ≈ 1.50. The circles denote the position of the snapshots
pictured in figures 6–10.

the above basic flow may be divided as well into three stages (figure 5): an initial
energy decrease followed by an instability phase and a re-stabilization. The growth
phase lies within the Batchelor-vortex instability domain, though it does not start
with the crossing of q = 1.5. By contrast, the re-stabilization occurs very close to
q = 1.5. Within the quasi-static approximation, this latter effect is accounted for in
a straightforward manner, since the local dynamics is understood in terms of the
stability of an unstretched steady Batchelor vortex with instantaneous swirl number
q(τ). The time delay between growth and penetration into the Batchelor-vortex
instability domain is clearly of the same transient nature as the one observed in the
unstretched case (figure 1). In other words, these perturbations are not optimal when
parameters enter the instability domain. Similar observations were made for other
flows, e.g. the Görtler instability (Cossu et al. 2000). The instantaneous growth rate
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Figure 6. Spectrum of transverse j
1/2
pl (a, b) and axial j

1/2
ax (c, d ) r.m.s. perturbation velocities with

respect to the axial wavenumber kz̄ at τ = 0, 5, 10, 12.5, 15, 17.5, 20, 25, 30. Frames (b) and (d ) are
close-ups of the low-wavenumber region, where pertinent phenomena occur.

(5.6) reaches a maximum value 0.35 at t ≈ 20 (or τ ≈ 15), i.e. when q(τ) ≈ 0.88. This
value may be tentatively compared with the growth rate 0.39 deduced after rescaling
the value computed for the unstretched Batchelor vortex of § 5.1 at q = 0.8 (see the
Appendix for details).

Figure 6 displays at various times τ (corresponding to circles in figures 3 and 4)
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Figure 7. Same as figure 6(b) but plotted with respect to the rescaled wavenumber kz̄S
−3/2.

the spectrum of the instantaneous energies jpl(z̄, τ), jax(z̄, τ) in terms of the axial
wavenumber kz̄ . At τ = 0, the spectrum is flat, as expected, since white noise is initially
introduced. For larger times, a bell-shaped spectrum emerges for both functions at
large scales (kz̄ = O(1)) while small scales are being rapidly damped. Such features
ensure that the computational domain is large enough in the axial z̄-direction, that
the simulation is sufficiently well resolved in spectral space to capture the main
flow-instability structures. The quasi-static approximation may provide a qualitative
interpretation of such an evolution. Note, however, that, in this latter framework,
the reference length scale along the axis is equal to a0S

−3/2 (see the end of § 3): kz̄ ,
which, in the simulation, is made dimensionless using length scale a0, must hence
be rescaled by a factor S−3/2. This rescaling is precisely applied in the companion
figure 7. First, the perturbation spectra between τ = 10 and τ = 20 undergo a rapid
growth which particularly affects rescaled wavenumbers kz̄S

−3/2 between 2 and 3.
Indeed, the growth rate of an unstretched Batchelor vortex at similar swirl numbers
achieves a maximum for axial wavenumbers between 2 and 3 (see figure 2). Secondly,
the maximum in figure 7 is progressively shifted, for larger τ, towards smaller rescaled
wavenumbers while the interval of amplified wavenumbers is reduced. In this range,
the swirl number q(τ) progressively increases across q ≈ 1.50: from standard results,
it is known that the upper unstable axial wavenumber then decreases while negative
helical modes are progressively restabilized, the mode n = −1 being the last one to
become stable (Delbende et al. 1998). This feature explains why, at final time τ = 30,
a ‘preferred’ relatively small axial wavenumber kz̄ ≈ 1.25 emerges through the process
of compression and stretching (see curve τ = 30 in figure 7).

The transverse flow structure is represented for different times in figure 8 where
isocontours of the axial component of the perturbation vorticity ωz are plotted at
a fixed streamwise location. The physical domain shown is a transverse cut of the
vortex centred around its core (the effective computational domain is much larger,
which avoids spurious periodic effects). One observes first a filtering of small scales
and the gradual appearance of a vortical structure. The observed symmetries indicate
the presence of azimuthal wavenumbers |n| = 4 and |n| = 5 which are reminiscent
of the most unstable azimuthal modes of the viscous unstretched Batchelor vortex
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Figure 8. Isocontours in the (r, θ)-plane of the axial component ωz of the perturbation vorticity at
a fixed axial location. Contours shown correspond to ωz(r, θ, t) = ±ωz,max/2

p, where p = 1, 2, · · · , 5.
Positive (resp. negative) values are represented by solid (resp. dashed) lines. Each snapshot cor-
responds to a circle in figures 3 and 4. Figure should be read from left to right and top to
bottom.

at q = 0.8. During the subsequent stretching phase, this structure is finally rolled-up.
Compression and stretching effects appear on the average vortex core size. A glimpse
at the three-dimensional perturbation is given in figure 9 where isosurfaces of the
axial vorticity perturbation ωz̄ are shown. Note that the expansion and compression
of the vortex core is not apparent here since, unlike in figure 8, the frames are
displayed in the modified spatial coordinates in which the vortex core size is constant.
These snapshots display the gradual appearance of axial and azimuthal symmetry
structures.

The above perturbation structure, when superimposed on the basic unsteady state,
leads to the three-dimensional flows displayed in figure 10(a, b). One isosurface of
the axial component of the total vorticity field Ωz̄ = Ω2D

z̄ + ωz̄ is presented for two
different initial r.m.s. perturbation levels (Jpl(0)/J0

pl)
1/2 = 8×10−4 for figure 10(a) and
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Figure 9. Isosurfaces of the axial component ωz̄ of the perturbation vorticity for
ωz̄(r̄, θ, z̄, τ) = ± 1

2
ωz̄,max. Each snapshot corresponds to a circle in figures 3 and 4. Note that

the conical aspect of the vortex is only due to the geometrical perspective.

(Jpl(0)/J0
pl)

1/2 = 1.4× 10−2 for figure 10(b). Results are shown until the maximum of

perturbation ωz̄(τ) becomes larger than the maximum of the basic flow Ω2D
z̄ . When

both amplitudes are of the same order of magnitude, this procedure is pertinent
only if nonlinear terms mainly affect the amplitude without drastically modifying the
spatial perturbation structure selected through the linear evolution. This hypothesis,
known to be valid in the framework of weakly nonlinear analyses, is an attempt to
reveal the nonlinear structure that may emerge from the compression and stretching
process. Such an assumption remains to be verified using a fully nonlinear simulation
code, which is outside the scope of the present paper. These frames indicate that the
vortex becomes corrugated as in a Matisse collage (Matisse 1952) with 4 or 5 lobes.
It is conjectured that a further evolution into the nonlinear regime might lead to the
formation of several interwoven filaments as observed in the experiment by Cadot,
Douady & Couder (1995) and in the numerical simulation of the nonlinear evolution
of the unstretched Batchelor vortex by Delbende & Chomaz (2000).

The influence of the time Tinst spent by the perturbation within the Batchelor-vortex
instability domain is now investigated. Figure 11(a, b) shows the results of various
simulations of compression and stretching processes with γ̃ = ±0.05 for various time
intervals Tinst (see figure 11a). The initial swirl q(0) is now set to the value 1.6. The
total amplification gain† which results from the excursion of the perturbation inside
the Batchelor-vortex instability domain can be deduced from the energy curves on
figure 11(b). It clearly increases with the time interval Tinst as expected from a naive
quasi-static approximation. On curve (i), the vortex remains inside the instability

† It is clear, as for any linear evolution, that the displayed total gains computed over a finite
time depend on the selected initial conditions. The present curves are obtained for an initial
divergence-free white noise field. Larger amplitudes could certainly be reached with more optimal
initial conditions.
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Figure 10. Isosurfaces of the axial component Ωz̄ of the total vorticity for Ωz̄(r̄, θ, z̄, τ) = 1
2
Ωz̄,max.

For series (a), the simulation is initiated with a r.m.s. value (Jpl(0)/J0
pl)

1/2 = 8× 10−4. For series
(b), a stronger noise amplitude is used (Jpl(0)/J0

pl)
1/2 = 1.4× 10−2. Each snapshot corresponds to a

circle in figures 3 and 4. Note that the conical aspect of the vortex is only due to the geometrical
perspective.

region for a short period, and energy is always decreasing. On curve (ii), the total
amplification is less than unity even though the energy temporarily increases. By
contrast, curves (iii) and (iv) are characterized by respective substantial gains of
order 10 and 100. Note that on curve (iv), the amplitude derivative (5.6) has a local
minimum (near t = 22) inside the Batchelor-vortex instability domain. This feature
may be revealed by the quasi-static approximation since the instantaneous growth rate
of an associated unstretched Batchelor vortex following the path q(t) on figure 11(a),
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Figure 12. Various simulations (i–iv) with compression and stretching for different values of
γ̃ (respectively ±0.1, ±0.05, ±0.025, ±0.01). (a) Instantaneous swirl number q(t); (b) temporal
evolution of energy (Jpl/J
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reaches a local minimum at t ≈ 20. In the same spirit, figure 12(a) presents various
simulations performed with the same q(t?) ≈ 0.8 (i.e. swirl numbers cross the same
instability region) but with different γ values. In that case, the time spent Tinst is also
changed. Once |γ| increases, the time spent in the instability region decreases until the
amplification mechanism is no longer active (in figure 12 when |γ̃| > 0.05).

In turbulent flows, vortex filaments are subjected to fluctuating strain caused by
large-scale structures. The simple process defined by figures 11 and 12 aims at
emulating such fluctuations and provides the following mechanism: a stable vortex
is first brought inside the Batchelor-vortex instability domain by a sufficiently long
compression. It remains in that region and grows until γ, which expresses the action
of surrounding large scales, changes sign. Stretching then makes the vortex leave
the instability domain, which stops the perturbation growth. If perturbations have
reached a high enough amplitude, the vortex may be disrupted because of nonlinear
interactions. This two-step mechanism tentatively explains the abrupt destruction of
vortices as observed in turbulent flows.

6. Conclusion
In this paper, the three-dimensional linear stability problem of a stretched vortex

with axial flow has been addressed. It has first been shown that these stability
equations could be reduced to equations similar to those governing perturbations of
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an unstretched vortex, however with particular time-varying parameters. It has also
been argued how this slight difference (an additionnal time-varying factor in the axial
derivatives) drops out in a quasi-static approximation. This regime should be valid in
the limit of weak stretching and large Reynolds numbers.

The general perturbation equations for the stretched Batchelor vortex have then
been numerically solved for particular variations of the stretching rate, using white
noise as initial condition. Compressing and stretching the vortex leads to the ap-
pearance of axial and azimuthal symmetry structures whereby the vortex becomes
corrugated with several lobe structures. In addition, the local time evolution of per-
turbations may be understood in the framework of a quasi-static approximation
provided the strain rate is not too large.

Results were also discussed in the context of turbulence. The stretched Batchelor
vortex subjected to the prototype stretching field might mimic the behaviour of
filaments in a turbulent background flow and their destruction could be due to the
modification of the vortex characteristics by stretching. This mechanism is clearly
different from the elliptic instability mechanism (Le Dizès et al. 1996; Eloy & Le
Dizès 1999) although both could be active in turbulence. In the elliptical mechanism,
the instability is generated by the stretching field and not by the vortex itself. In
particular, the local growth rate of the elliptical instability is proportional to the
non-axisymmetric component of the stretching rate and therefore it is expected to
be much smaller than the growth rate of the Batchelor vortex instability, which is
proportional to the axial vorticity of the vortex.

The nonlinear interactions which are needed to describe the vortex destruction
have not been considered in the present analysis. This constitutes an important issue
as nonlinear effects can induce both rich dynamics in the Batchelor vortex (Abid &
Brachet 1998; Delbende & Chomaz 2000) and strong modification of the stretching
field (Abid et al. 2002). Linear aspects are also not fully explored as we have not tried
to seek the most unstable perturbation. The determination of the optimal perturbation
is indeed an open issue which could have important applications in aeronautics. In
the context of vortex stability, such an issue has only been addressed by Nolan &
Farrell (1999) for two-dimensional perturbations in a class of tornado-like vortices. In
future work, it would be interesting to extend their analysis to the three-dimensional
problem and to perform a full generalized three-dimensional stability analysis (Farrell
& Ioannou 1996) of the system (3.20)–(3.23).

We would like to acknowledge the use of a NEC–SX5 supercomputer at IDRIS–
CNRS in the frame of projects CP2–#990173 and #000173. Thanks to Dang Anh-
Tuân for his rapid and kind technical assistance.

Appendix
In the framework of the quasi-static approximation, the instantaneous growth

rate (5.6) at time t is associated with the growth rate of an unstretched Batchelor
vortex at q(τ) provided that a proper normalization factor is taken into account. This
latter quantity arises because the unstretched vortex dimensionless characteristics are
evaluated (i) using time τ and (ii) with the time scale a(t)/W (t) = S(τ)1/2a0/W0. This
implies that the standard growth rate must be divided by a factor S(τ) to account for
the relation dτ = s(t)dt and multiplied by a factor S(τ)1/2 since the time scale of the
simulation is taken to be a0/W0.

In the simulation considered in § 5.2, the instantaneous growth rate 0.35 is obtained
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at t ≈ 20 (or τ ≈ 15) and may be associated with the the standard growth rate 0.31
(computed for the unstretched Batchelor vortex at q = 0.8 in § 5.1) which, divided by
an overall factor S(τ = 15)1/2 ≈ 0.79, yields 0.39. Note, however, that this is only a
rough estimate since the swirl number 0.8 used for comparison purposes is located
slightly below the lower value for q(τ) and since the Reynolds number should also be
rescaled.
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Verzicco, R. & Jiménez, J. 1999 On the survival of strong vortex filaments in ‘model’ turbulence.
J. Fluid Mech. 394, 261–279.
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